博客
关于我
数据分析工具Pandas基础--Series的索引操作
阅读量:280 次
发布时间:2019-03-01

本文共 776 字,大约阅读时间需要 2 分钟。

理论:

行索引:

按索引位置:ser_obj[pos]

按索引名称:ser_obj[‘label’]

切片索引:

按索引位置:ser_obj[2:4]

按索引名称:ser_obj[‘label1’: ‘label3’],注意,按索引名切片操作时,是包含终止

不连续索引:

ser_obj[ [‘label1’, ‘label2’, ‘label3’] ]

ser_obj[ [pos1, pos2, pos3] ]

 

实验:

第四节 Series的索引操作

In [1]:

 

 
import pandas as pd
import numpy as np

In [2]:

 

 
# 构建Series
ser_obj = pd.Series(range(5),index=['a','b','c','d','e'])
ser_obj

Out[2]:

a    0b    1c    2d    3e    4dtype: int64

行索引

In [7]:

 

 
ser_obj['b']
ser_obj.loc['b']

Out[7]:

1

In [4]:

 

ser_obj[1]
ser_obj.iloc[]

Out[4]:

1

切片索引

In [5]:

 

 
ser_obj[1:3]

Out[5]:

b    1c    2dtype: int64

In [6]:

 

# 注意区别
ser_obj['b':'d']

Out[6]:

b    1c    2d    3dtype: int64

不连续索引

In [8]:

 

ser_obj[[0,2,4]]

Out[8]:

a    0c    2e    4dtype: int64

In [9]:

 

 
ser_obj[['b','d']]

Out[9]:

b    1d    3dtype: int64

转载地址:http://mcla.baihongyu.com/

你可能感兴趣的文章
Mysql-丢失更新
查看>>
Mysql-事务阻塞
查看>>
Mysql-存储引擎
查看>>
mysql-开启慢查询&所有操作记录日志
查看>>
MySQL-数据目录
查看>>
MySQL-数据页的结构
查看>>
MySQL-架构篇
查看>>
MySQL-索引的分类(聚簇索引、二级索引、联合索引)
查看>>
Mysql-触发器及创建触发器失败原因
查看>>
MySQL-连接
查看>>
mysql-递归查询(二)
查看>>
MySQL5.1安装
查看>>
mysql5.5和5.6版本间的坑
查看>>
mysql5.5最简安装教程
查看>>
mysql5.6 TIME,DATETIME,TIMESTAMP
查看>>
mysql5.6.21重置数据库的root密码
查看>>
Mysql5.6主从复制-基于binlog
查看>>
MySQL5.6忘记root密码(win平台)
查看>>
MySQL5.6的Linux安装shell脚本之二进制安装(一)
查看>>
MySQL5.6的zip包安装教程
查看>>