博客
关于我
数据分析工具Pandas基础--Series的索引操作
阅读量:280 次
发布时间:2019-03-01

本文共 776 字,大约阅读时间需要 2 分钟。

理论:

行索引:

按索引位置:ser_obj[pos]

按索引名称:ser_obj[‘label’]

切片索引:

按索引位置:ser_obj[2:4]

按索引名称:ser_obj[‘label1’: ‘label3’],注意,按索引名切片操作时,是包含终止

不连续索引:

ser_obj[ [‘label1’, ‘label2’, ‘label3’] ]

ser_obj[ [pos1, pos2, pos3] ]

 

实验:

第四节 Series的索引操作

In [1]:

 

 
import pandas as pd
import numpy as np

In [2]:

 

 
# 构建Series
ser_obj = pd.Series(range(5),index=['a','b','c','d','e'])
ser_obj

Out[2]:

a    0b    1c    2d    3e    4dtype: int64

行索引

In [7]:

 

 
ser_obj['b']
ser_obj.loc['b']

Out[7]:

1

In [4]:

 

ser_obj[1]
ser_obj.iloc[]

Out[4]:

1

切片索引

In [5]:

 

 
ser_obj[1:3]

Out[5]:

b    1c    2dtype: int64

In [6]:

 

# 注意区别
ser_obj['b':'d']

Out[6]:

b    1c    2d    3dtype: int64

不连续索引

In [8]:

 

ser_obj[[0,2,4]]

Out[8]:

a    0c    2e    4dtype: int64

In [9]:

 

 
ser_obj[['b','d']]

Out[9]:

b    1d    3dtype: int64

转载地址:http://mcla.baihongyu.com/

你可能感兴趣的文章
Mysql 优化 or
查看>>
mysql 优化器 key_mysql – 选择*和查询优化器
查看>>
MySQL 优化:Explain 执行计划详解
查看>>
Mysql 会导致锁表的语法
查看>>
mysql 使用sql文件恢复数据库
查看>>
mysql 修改默认字符集为utf8
查看>>
Mysql 共享锁
查看>>
MySQL 内核深度优化
查看>>
mysql 内连接、自然连接、外连接的区别
查看>>
mysql 写入慢优化
查看>>
mysql 分组统计SQL语句
查看>>
Mysql 分页
查看>>
Mysql 分页语句 Limit原理
查看>>
MySQL 创建新用户及授予权限的完整流程
查看>>
mysql 创建表,不能包含关键字values 以及 表id自增问题
查看>>
mysql 删除日志文件详解
查看>>
mysql 判断表字段是否存在,然后修改
查看>>
mysql 协议的退出命令包及解析
查看>>
mysql 取表中分组之后最新一条数据 分组最新数据 分组取最新数据 分组数据 获取每个分类的最新数据
查看>>
mysql 多个表关联查询查询时间长的问题
查看>>