博客
关于我
数据分析工具Pandas基础--Series的索引操作
阅读量:280 次
发布时间:2019-03-01

本文共 776 字,大约阅读时间需要 2 分钟。

理论:

行索引:

按索引位置:ser_obj[pos]

按索引名称:ser_obj[‘label’]

切片索引:

按索引位置:ser_obj[2:4]

按索引名称:ser_obj[‘label1’: ‘label3’],注意,按索引名切片操作时,是包含终止

不连续索引:

ser_obj[ [‘label1’, ‘label2’, ‘label3’] ]

ser_obj[ [pos1, pos2, pos3] ]

 

实验:

第四节 Series的索引操作

In [1]:

 

 
import pandas as pd
import numpy as np

In [2]:

 

 
# 构建Series
ser_obj = pd.Series(range(5),index=['a','b','c','d','e'])
ser_obj

Out[2]:

a    0b    1c    2d    3e    4dtype: int64

行索引

In [7]:

 

 
ser_obj['b']
ser_obj.loc['b']

Out[7]:

1

In [4]:

 

ser_obj[1]
ser_obj.iloc[]

Out[4]:

1

切片索引

In [5]:

 

 
ser_obj[1:3]

Out[5]:

b    1c    2dtype: int64

In [6]:

 

# 注意区别
ser_obj['b':'d']

Out[6]:

b    1c    2d    3dtype: int64

不连续索引

In [8]:

 

ser_obj[[0,2,4]]

Out[8]:

a    0c    2e    4dtype: int64

In [9]:

 

 
ser_obj[['b','d']]

Out[9]:

b    1d    3dtype: int64

转载地址:http://mcla.baihongyu.com/

你可能感兴趣的文章
MySQL Error Handling in Stored Procedures---转载
查看>>
MVC 区域功能
查看>>
MySQL FEDERATED 提示
查看>>
mysql generic安装_MySQL 5.6 Generic Binary安装与配置_MySQL
查看>>
Mysql group by
查看>>
MySQL I 有福啦,窗口函数大大提高了取数的效率!
查看>>
mysql id自动增长 初始值 Mysql重置auto_increment初始值
查看>>
MySQL in 太多过慢的 3 种解决方案
查看>>
MySQL InnoDB 三大文件日志,看完秒懂
查看>>
Mysql InnoDB 数据更新导致锁表
查看>>
Mysql Innodb 锁机制
查看>>
MySQL InnoDB中意向锁的作用及原理探
查看>>
MySQL InnoDB事务隔离级别与锁机制深入解析
查看>>
Mysql InnoDB存储引擎 —— 数据页
查看>>
Mysql InnoDB存储引擎中的checkpoint技术
查看>>
Mysql InnoDB存储引擎中缓冲池Buffer Pool、Redo Log、Bin Log、Undo Log、Channge Buffer
查看>>
MySQL InnoDB引擎的锁机制详解
查看>>
Mysql INNODB引擎行锁的3种算法 Record Lock Next-Key Lock Grap Lock
查看>>
mysql InnoDB数据存储引擎 的B+树索引原理
查看>>
mysql innodb通过使用mvcc来实现可重复读
查看>>